VARISTAR LHX 20
User’s Manual

Product Number:
60714-050
Impressum:

Schroff GmbH
D-75334 Straubenhardt, Germany

The details in this manual have been carefully compiled and checked - supported by certified Quality Management System to EN ISO 9001/2000

The company cannot accept any liability for errors or misprints. The company reserves the right to amendments of technical specifications due to further development and improvement of products.

Copyright © 2012

All rights and technical modifications reserved.
Table of Contents

1 Safety Information ... 1
 1.1 Intended Use ... 1
 1.2 Manufacturer's Safety Information 1
 1.2.1 Liability Disclaimer ... 1
 1.2.2 Safety symbols used in this manual 1
 1.3 Safety Information for the Operator 2
 1.4 Additional literature ... 2

2 Device description .. 3
 2.1 Overview of Cooling Module 4
 2.2 How the cooling system works 5
 2.3 Air loop ... 6
 2.4 Water loop ... 6
 2.5 Regulation ... 7
 2.6 Alarms ... 7

3 Operating the cooling module .. 8
 3.1 Control and display unit ... 8
 3.2 Setting the air exit temperature 9

4 Storage and transport ... 10
 4.1 Removing the packaging materials 10

5 Commissioning ... 11
 5.1 Setting up the VARISTAR cabinet 11
 5.2 Initial Commissioning .. 11
 5.3 Connect to the cooling water source 12
 5.3.1 Requirements for water quality 13
 5.3.2 Water connections at the cooling module 14
 5.4 Connecting to the electricity supply 15
 5.5 Bleeding air from the cooling system 16
 5.5.1 Steps for bleeding ... 17
 5.5.2 Test operation .. 18

6 Interfaces .. 19
 6.1 Pinout of D-sub 25 socket ... 19
 6.2 Inputs and outputs on the control board 20
 6.3 Pinout of D-sub 9 socket .. 20
 6.4 RJ45 socket pinout .. 20
7 Maintenance and Repair ... 21
 7.1 Inspection and Maintenance Intervals ... 21
 7.2 Error messages ... 22
 7.3 Fitting/removing the cooling module ... 23
 7.3.1 Decommissioning the cooling module 23
 7.3.2 Fitting and removing the cooling module 24
 7.3.3 Flushing the cooling module with antifreeze 25
 7.4 Component replacement ... 26
 7.4.1 Removing and fitting fans .. 26
 7.4.2 Removing and fitting the fan unit .. 27
 7.4.3 Cleaning / replacing the droplet separator 28
 7.4.4 Replacing the electric control valve actuator 29
 7.4.5 Replacing the control and display unit 30
 7.4.6 Replacing the temperature sensors 31
 7.4.7 Replacing other components .. 32
 8 Service .. 33
 8.1 Service and Returns ... 33
 8.2 Technical support ... 33
 8.3 Declaration of Conformity .. 34
 8.4 Accessories ... 35
 8.5 Spare parts ... 35
 9 Technical data .. 36
 10 Appendix .. 37
 10.1 Cooling capacity .. 37
 10.2 Connectors/interfaces on the control board 38
 10.3 AC power supply diagram ... 39
 10.4 Temperature sensor connections ... 40
 10.5 Fan and control valve connections ... 41
 10.6 Display connection; connectors on the control board 42
 10.7 Dimensions ... 43
 10.8 LHX 20 base plate ... 44
 10.9 Example installation .. 45
 10.10 Piping and instrumentation diagram 46
1 Safety Information

1.1 Intended Use

The 60714-050 cooling module described in this manual is a component of a Schroff VARISTAR LHX 20 cabinet. The VARISTAR LHX 20 cabinet forms a closed system and allows the cooling of electronic components mounted in its 19" plane independently of the ambient or room temperature. Before commencing operation the module must be connected to an external recirculation cooling system (reciprocator chiller).

1.2 Manufacturer's Safety Information

1.2.1 Liability Disclaimer

Schroff accepts no liability for any errors in this documentation. To the maximum extent permissible by law, any liability for damage, direct or indirect, arising from the supply or use of this documentation is excluded.

Schroff retains the right to modify this document, including the liability disclaimer, at any time without notice and accepts no liability for any consequences of such alterations.

1.2.2 Safety symbols used in this manual

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Hazardous voltage!]</td>
<td>Hazardous voltage! This symbol warns of hazardous voltage. Before commencing work on live sections of the equipment you should familiarise yourself with the dangers of high voltages and with the normal accident-prevention procedures.</td>
</tr>
<tr>
<td>![Attention!]</td>
<td>Attention! This symbol warns of danger. It indicates that you are in a situation that could be injurious to health. Before commencing work you should familiarise yourself with the normal accident-prevention procedures.</td>
</tr>
<tr>
<td>![Static discharge hazard!]</td>
<td>Static discharge hazard! Static electricity can damage sensitive components in the system. To avoid such damage you should wear ESD armbands or maintain frequent bodily contact with a part of the metal enclosure.</td>
</tr>
<tr>
<td>![Danger of tipping over!]</td>
<td>Danger of tipping over! The asymmetrical positioning of the cooling module poses a risk of the cabinet tipping over. The VARISTAR LHX 20 must always be adequately secured during transport.</td>
</tr>
</tbody>
</table>
1.3 Safety Information for the Operator

Commissioning, maintenance and operation of the system may only be carried out by suitably trained technical personnel. The nationally applicable health and safety regulations must also be adhered to.

1.4 Additional literature

You can find further information on the VARISTAR LHX 20 online at www.varistar.co.uk
2 Device description

The 60714-050 cooling module is a component of a Schroff VARISTAR LHX 20 cabinet. The module is a plug-in unit that may be fitted to the left or right in the cabinet according to the customer’s wishes.

The cooling module has a maximum cooling output of 20 kW and is designed for a mains supply voltage of 230 V\textsubscript{AC} (115 V\textsubscript{AC} and 48 V\textsubscript{DC} versions are available on request).

The supply voltage is converted to 48 V\textsubscript{DC} by an adaptor to power the control electronics and the fans.

Since the control electronics and fans are designed for a 48 V\textsubscript{DC} supply, the cooling module also finds application in telecommunications environments.

Further information is available on request.

ServicePLUS

For further information visit: www.schroff.biz/ServicePlus

This cooling module is finished in RAL 7021 (black grey) as standard. It is shown in red in these instructions for greater clarity of viewing.
2.1 Overview of Cooling Module

Figure 1: Overview of Cooling Module

1. Fans
2. Display and control unit
3. Control system
4. Mains input IEC320-C14
5. Cooling water inlet and return and condensate drain
6. Bleeder valve
7. Droplet separator
8. Air/water heat exchanger
9. Condensation vessel
10. Control valve with servo actuator
11. AC adaptor

F1/F2: Air outlet temperature sensors
F3/F4: Air inlet temperature sensors
F5: Water inlet temperature sensor
2.2 How the cooling system works

The cooling system consists of an air loop and a water loop.

The fans of the cooling unit draw warm air from the rear section of the cabinet and into an air/water heat exchanger. The air is cooled here and then blown into the front area of the cabinet. Inside the air/water heat exchanger the heat energy of the warm air is transferred to the medium of water. The air/water heat exchanger is connected to an external reciprocal chiller unit (not supplied with the module), where the water is cooled again.

Figure 2: Functioning of the cooling module

1 Cooling module
2 LHX 20 cabinet
3 Chiller
2.3 Air loop

The heat generated by the electronic components housed in the 19” plane collects in the rear section of the cabinet. The fans of the cooling module draw the heated air away and feed it into the air/water heat exchanger. The heat energy is thus transferred to the water loop. The cooled air is then returned to the front section of the cabinet. A droplet separator draws off any condensation that may form. The condensation is collected in a condensation vessel and discharged via the condensate drain at the front of the LHX 20 module.

The use of 6 fans, positioned vertically over the entire cabinet height, ensures that a homogenous temperature gradation is obtained. The temperature difference may thus be reduced and the efficiency of the cooling system increased.

Air loop components:
- Air/water heat exchanger
- Droplet separator
- Fans
- Air temperature sensors

2.4 Water loop

Cooling water from the external chiller passes through the air/water heat exchanger of the cooling module, absorbs heat from this and returns to the chiller. Temperature control is obtained via a servo-driven control valve that regulates the water flow rate according to the cooling capacity required.

Please see the piping and instrumentation diagram in the Appendix for further information.

Water loop components:
- Control valve
- Air/water heat exchanger
- Water temperature sensors

Note: The control valve is in fact a three-way valve that functions as a straight-way valve since the bypass has been factory sealed. If required, the cover seal can be removed by Schroff Service to provide three-way functionality.
2.5 Regulation

The fans and the control valve of the water loop are governed by a microprocessor-controlled control unit. A PID control loop regulates the water flow rate through the air/water heat exchanger on the basis of the air exit temperature from the cooling module.

To compensate for temperature gradation effects, the air exit temperature is obtained using two temperature sensors (F1/F2) set at different heights. The average of their values is used as the control value for opening and closing the control valve.

The fans are driven constantly at 80% of nominal speed to ensure sufficient air circulation in the cabinet. Should the air exit temperature exceed 26°C (factory setting), the unit switches to maximum cooling capacity: the control valve is opened to 100% and the fans are driven at 100% nominal speed.

The control characteristic has been factory preset but can be altered and adapted by Schroff Service or one of its licensed service partners.

2.6 Alarms

The control electronics can detect various faults (e.g. a broken sensor cable or a temperature that exceeds set limit values), save them in an alarm memory and signal the fault on the display or via potential-free contacts. A buzzer (horn) is fitted in the cooling module for issuing acoustic alarms.

The following situations are signalled:
• Fan speed falls below minimum permitted speed
• Fan failure
• Limit (min/max) value of a temperature sensor reached
• Broken cable on a temperature sensor
• Door open (optional)
• Operating at max. cooling output
3 Operating the cooling module

3.1 Control and display unit

The combined control and display unit allows various settings and adjustments to be made. In normal operation the display shows the current air exit temperature from the module (F1/F2 averaged).

Figure 3: Display and control unit

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP button</td>
<td>Pressing this button increases the value of a parameter.</td>
</tr>
<tr>
<td>DOWN button</td>
<td>Pressing this button reduces the value of a parameter.</td>
</tr>
<tr>
<td></td>
<td>If an alarm has been activated, this button switches off the buzzer function (horn).</td>
</tr>
<tr>
<td>SET button</td>
<td>Pressing the SET button during normal operation displays the current set value of the air exit temperature. Now pressing the UP button will increase the set value; pressing the DOWN button will reduce the set value.</td>
</tr>
<tr>
<td>FUNCTION button</td>
<td>Pressing this button displays the air entry temperature (average values of sensors F3/F4).</td>
</tr>
<tr>
<td>STANDBY button</td>
<td>This button switches the cooling unit on or puts it into standby mode.</td>
</tr>
</tbody>
</table>

Please note: When the unit is in standby mode, all components are still electrically live.
3.2 Setting the air exit temperature

The user can set the air exit temperature of the cooling module within the range 18°C to 30°C.

To do so, follow the following steps:

1. Press and hold the SET button. The current set value of the air exit temperature is displayed.

2. While holding down the SET button, use the UP or DOWN button to obtain the desired new set value.

3. Release the SET button to accept the new set value.

The user cannot make any other adjustments than the air exit temperature. Modifications to the parameterisation or control behaviour of the alarm outputs can be carried out only by Schroff service personnel or authorised Schroff service partners.
4 Storage and transport

Danger of tipping over!
The asymmetrical positioning of the cooling module poses a risk of the cabinet tipping over. The VARISTAR LHX 20 must always be adequately secured during transport.

Attention!
If the unit is to be stored or transported in ambient temperatures below 0 °C, special measures must be taken to prevent frost damage.

(See Chapter 7.3.1, "Decommissioning the cooling module")

For ease of transport the cooling module can be removed and transported separately from the cabinet. You should pay attention to the relevant work instructions and safety information.

It is essential that the VARISTAR LHX 20 and/or cooling module are free of any water during transport. (See Chapter 7.3.1, "Decommissioning the cooling module")

4.1 Removing the packaging materials

The VARISTAR LHX 20 is delivered on a special pallet. After unpacking, check the cabinet and cooling module for any damage caused during transport or otherwise.

Attention!
Risk of condensation forming.
After storage at temperatures below 10 °C, sufficient acclimatisation time must be allowed before the unit is switched on.
5 Commissioning

5.1 Setting up the VARISTAR cabinet

Danger of tipping over!
The asymmetrical positioning of the cooling module poses a risk of the cabinet tipping over. The VARISTAR LHX 20 must always be adequately secured during transport.

Attention!
The setting up, commissioning, completion, maintenance and repair of VARISTAR cabinets may only be carried out by suitably trained technical personnel. During all such operations the nationally applicable health and safety regulations must be adhered to.

ServicePLUS
The setting up, commissioning, completion, maintenance and repair of VARISTAR cabinets may also be carried out within Schroff’s service program. Please ask about our after-sales services.

You can obtain further information about our ServicePLUS options online at: www.schroff.biz/ServicePlus

5.2 Initial Commissioning

Hazardous voltage!
Under certain circumstances during commissioning, completion, maintenance and service it is necessary to open the enclosure. Some exposed parts may be under live voltage. These works must therefore only be carried out by specially trained technical personnel.

Before commissioning the cooling module the following work must be carried out:
- Connect to cooling water source.
- Connect to supply voltage.
- Bleed (exhaust any trapped air from) the cooling module.
5.3 Connect to the cooling water source

<table>
<thead>
<tr>
<th>Attention!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection to the cooling water supply may only be carried out by a refrigeration engineer or suitably trained plumber.</td>
</tr>
</tbody>
</table>

Notes on the water connection:

The cooling infrastructure to which the unit is connected (the external water loop) must be appropriately dimensioned by the system designer, taking into consideration the available pump pressure and type, the nominal pipe diameters and the pressure loss expected in the load circuit (the cooling module).

The water pipes used may be either flexible or rigid types. The behaviour of the materials used in the module with those of the external loop should be observed for any adverse reaction in order to avoid corrosion damage.

During construction of the external pipe circuitry care should be taken to prevent contaminants entering the system; the pipes should be flushed clean prior to connection to the cooling module.

It is recommended that isolation and drainage valves be provided for each cabinet or cooling module, together with a central water filter and air separator.

The control valve in the water loop of the cooling module is a three-way valve that is supplied configured as a straight-way (two-way) valve; the bypass is sealed closed. The advantage of this solution is that only the specific volume of water required for cooling flows through the air/water heat exchanger. The circulator pump can thus be operated with constant pressure and variable water flow.

For cooling systems in which the three-way functionality is required, the two-way valve can be suitably modified by Schroff service personnel.
5.3.1 Requirements for water quality

Attention!

For problem-free operation of the cooling module, the following water quality requirements must be satisfied: (see also VDI 3803)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical conductivity:</td>
<td>25 mS/m - 220 mS/m at 25 °C</td>
</tr>
<tr>
<td>Hydrogen concentration:</td>
<td>7.5 - 8.5 (pH value) at 20 °C</td>
</tr>
<tr>
<td>Chloride:</td>
<td>< 200 g/m³</td>
</tr>
<tr>
<td>Total hardness:</td>
<td>> 3 °dH < 8 °dH</td>
</tr>
<tr>
<td>Colony-forming units:</td>
<td>< 10 000 CFU/ml</td>
</tr>
<tr>
<td>Appearance:</td>
<td>clear, without sediment</td>
</tr>
<tr>
<td>Colour:</td>
<td>colourless</td>
</tr>
</tbody>
</table>

Attention!

To prevent electrochemical corrosion the compatibility of the materials used in the cooling module with those of the external cooling circuit should be monitored and where necessary a suitable anti-corrosion agent applied. Risk of corrosion is particularly high where aluminium is used in the external water loop.

The following materials are used within the cooling module:

- copper
- brass
- stainless steel
- cast iron
5.3.2 Water connections at the cooling module

The water connections are situated to the front of the cooling module. The pipes are fed through the base of the cabinet.

Please consult the drawing provided in the Appendix of this manual for the nominal pipe diameters and position of the connections in the cabinet.

Connect the water inlet (2), water return (1) and condensate drain (3) to the cooling module as shown in the illustration below.

Attention!

Ensure that the condensate drain is provided with sufficient downward gradient to the waste water system.

Figure 4: Water connections at the cooling module

1 Water return 3 Condensate drain
2 Water inlet
5.4 Connecting to the electricity supply

<table>
<thead>
<tr>
<th>Hazardous voltage!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under certain circumstances during commissioning, completion, maintenance and service it is necessary to open the enclosure.</td>
</tr>
<tr>
<td>Some exposed parts may be under live voltage. These works must therefore only be carried out by specially trained technical personnel.</td>
</tr>
<tr>
<td>Always disconnect the supply voltage before opening the module!</td>
</tr>
</tbody>
</table>

These cooling modules are designed for a 230 V\textsubscript{AC} mains supply. The control electronics and fans, however, operate from a 48 V\textsubscript{DC} supply. The 230 V\textsubscript{AC} version is fitted with a 230 V\textsubscript{AC} mains adaptor, which is positioned in the cooling module beneath the heat exchanger.

If the cooling unit is to be used exclusively in telecommunications environments (redundant -48 V\textsubscript{DC} power supply), please contact Schroff Service for further information.

Mains supply to the 230 V\textsubscript{AC} version is via a IEC320-C14 connector with cable strain relief, situated on the bottom of the cooling module.

A suitable connecting cable (IEC320-C13 Schuko) is provided with the module.

All cooling modules must be protected by an external pre-fuse of max. 10 A.

<table>
<thead>
<tr>
<th>Attention!</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the connecting cable supplied is not suitable for your country, you should only substitute a mains connector with protective earthing that is permitted for your device and for use in your country.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazardous voltage!</th>
</tr>
</thead>
<tbody>
<tr>
<td>When power is connected, the cooling module enters standby mode. Certain parts inside the unit are however already live.</td>
</tr>
<tr>
<td>Always disconnect the supply voltage before opening the module!</td>
</tr>
</tbody>
</table>

When power is connected to the module the display shows "OFF". If this does not occur, open the cover of the display unit and check the status of the circuit breaker situated below.
5.5 Bleeding air from the cooling system

To bleed air from the cooling system the control valve must be open. The control valve is driven by a servo actuator and opened and closed by the control electronics according to the demand for cooling.

The control valve is only open when:
• the supply voltage is present,
• the cooling module is switched on,
• and the ambient temperature is over 18 °C.

At temperatures below 18 °C and without power the valve is closed and bleeding cannot take place.

For safety reasons Schroff recommends that during bleeding operations the power supply be isolated and the control valve opened by operating the actuator manually.

Requirements for bleeding the system:
• The water installation must be fully completed. Water inlet to the module should however still be closed.
• The electrical installation must be completed.
• The refrigeration engineer or plumber with access to the water installation should be present.

If the equipment consists of multiple VARISTAR cabinets with cooling modules, all systems are bled together.
5.5.1 Steps for bleeding

1. Open the rear of the cabinet.

2. Remove cover plate from the lower part of the cooling module.

3. Using a 3 mm hexagonal key, adjust the actuator manually to position 1 (A).
 Note: Power supply to the cooling module must be isolated while the control valve is being operated manually.

4. Have the refrigeration engineer/plumber open the water inlet to the cabinets. If present: open the stopcocks in the false floor in front of the cabinets.
 Note: Where more than one cabinet is present, carry out steps 1 to 3 on each cabinet.

5. Pull bleeder tube (2) out from the module and place in a container with a capacity of at least 1.5 litres.

6. Open the bleeder valve (1) using the four-sided Allen key provided. Allow any air to escape. When water begins to pass, close the valve (1) again.

7. Repeat step 6 for all cabinets.
 Note: After bleeding 3 - 4 cabinets, the plumber/engineer should allow more water to flow into the system.
5.5.2 Test operation

Connect the mains supply and switch the cooling module on with the ON/OFF button on the control unit. The fans run briefly at maximum speed before being adjusted down to nominal speed. Since there is as yet no thermal load installed in the cabinet, the desired temperature of 20 °C is quickly achieved.

Note: Where no thermal load is installed, the following situations may occur:

(a) Error messages F16 or F18 are signalled. The water inlet temperature is too low. Remedy: Briefly switch off the cabinet on which the message appears and switch on again immediately. Messages F16 and F18 cannot be resolved in any other way.

(b) The temperature display vacillates in the first hour between 18 °C and 25 °C. No action required; the system will stabilise by itself.

(c) Should error messages F18 or F21 occur please notify the plumber/engineer, who should check the water inlet.

After the test run the bleeder valve (1) can be briefly opened again to check whether any air has again collected in the heat exchanger. Now the system is filled with water and bled of air. The bleeder tube can be tucked back into the module and the cover plate fitted back over the control valve. The bleeder tube must be fixed to the air inlet grille using a cable tie.

The user cannot make any other adjustments than the air exhaust temperature. Modifications to the parameterisation or control behaviour of the alarm outputs can be carried out only by Schroff service personnel or authorised Schroff service partners.
6 Interfaces

Situated beside the control and display unit are a D-sub 25 socket, a D-sub 9 connector and a RJ45 socket. Additional interfaces are provided on the control board and can only be accessed by removing the front cover of the cooling module. (See control board overview in the Appendix.)

Figure 5: Interfaces

6.1 Pinout of D-sub 25 socket

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11</td>
<td>pin 10 / pin 22</td>
<td>Digital input: when bridged > remote control on/off</td>
</tr>
<tr>
<td>E12</td>
<td>pin 11 / pin 24</td>
<td>Digital input: when bridged > request max. cooling output</td>
</tr>
<tr>
<td>E13</td>
<td>pin 13 / pin 25</td>
<td>Digital input: reserve</td>
</tr>
<tr>
<td>K4</td>
<td>pin 1 / pin 14</td>
<td>Relay output 1 A / 60 V, closes when power absent</td>
</tr>
<tr>
<td>K5</td>
<td>pin 2 / pin 15</td>
<td>Relay output 1 A / 60 V, closes when limit temperature value on sensors F1/F2 (outlet) is attained. Alarm threshold is set in PA0 (P10/P11).</td>
</tr>
<tr>
<td>K6</td>
<td>pin 3 / pin 16</td>
<td>Relay output 1 A / 60 V, closes when limit temperature value on sensor F5 (inlet) is reached. Alarm threshold is set in PA0 (P14/P15).</td>
</tr>
<tr>
<td>K7</td>
<td>pin 4 / pin 17</td>
<td>Relay output 1 A / 60 V, closes when limit value of fan speed is reached. Alarm threshold is set in PA0 (P21).</td>
</tr>
<tr>
<td>K8</td>
<td>pin 5 / pin 18</td>
<td>Relay output 1 A / 60 V, closes if common fault occurs</td>
</tr>
</tbody>
</table>
6.2 Inputs and outputs on the control board

An overview showing the position of the connectors on the control board is given in the Appendix.

6.3 Pinout of D-sub 9 socket

RS-232 interface, interface driver galvanically isolated. Status reports are issued at this interface.

Schroff LHX Ethernet gateway can be connected here. Error codes and temperatures/speeds can be accessed via Ethernet using SNMP.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
</tr>
</tbody>
</table>

6.4 RJ45 socket pinout

Two RJ45 sockets are provided on the control board. Both sockets are RS-485 interfaces, interface drivers are not galvanically isolated. One socket is located beside the control and display unit. An external control and display unit may be connected to this (CAT 5 cable, max. cable length 100 m). The display of the cooling module is connected to the socket inside the module.
7 Maintenance and Repair

Hazardous voltage!
Under certain circumstances during commissioning, completion, maintenance and service it is necessary to open the enclosure. Some exposed parts may be under live voltage. These works must therefore only be carried out by specially trained technical personnel. Always disconnect the supply voltage before opening the module!

Attention!
Commissioning, maintenance, repair and service may only be carried out by suitably trained technical personnel. The nationally applicable health and safety regulations must be adhered to.

ServicePLUS
Where a maintenance contract has been agreed, all maintenance shall be carried out exclusively by Schroff Service.
Please ask about our after-sales services.
You can obtain further information about our ServicePLUS options online at: www.schroff.biz/ServicePlus

7.1 Inspection and Maintenance Intervals

<table>
<thead>
<tr>
<th>Maintenance object</th>
<th>Interval</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water circulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>Every 2 weeks</td>
<td>Check quality of external cooling water</td>
</tr>
<tr>
<td></td>
<td>Every 4 weeks</td>
<td>Visual inspection of water loop for leaks</td>
</tr>
<tr>
<td></td>
<td>After opening water loop</td>
<td>Bleed system</td>
</tr>
<tr>
<td>Droplet separator</td>
<td>Every 3 - 6 weeks (dependent on site conditions and level of air pollution) When installed in data centers once a year</td>
<td>Visual inspection for contaminants; clean or replace droplet separator if required</td>
</tr>
<tr>
<td>Air loop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>Every 2 months</td>
<td>Check for noise etc; replace if necessary</td>
</tr>
</tbody>
</table>
7.2 Error messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Action at control unit</th>
<th>Remedy / Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Sensor error sensor 1 (air outlet 1) (break or short circuit on sensor F1)</td>
<td>not required</td>
<td>Inspect sensor</td>
</tr>
<tr>
<td>F2</td>
<td>Sensor error sensor 2 (air outlet 2) (break or short circuit on sensor F2)</td>
<td>not required</td>
<td>Inspect sensor</td>
</tr>
<tr>
<td>F3</td>
<td>Sensor error sensor 3 (air entry 1) (break or short circuit on sensor F3)</td>
<td>not required</td>
<td>Inspect sensor</td>
</tr>
<tr>
<td>F4</td>
<td>Sensor error sensor 4 (air entry 2) (break or short circuit on sensor F4)</td>
<td>not required</td>
<td>Inspect sensor</td>
</tr>
<tr>
<td>F5</td>
<td>Sensor error sensor 5 (air entry) (break or short circuit on sensor F3)</td>
<td>not required</td>
<td>Inspect sensor</td>
</tr>
<tr>
<td>F6</td>
<td>Sensor error sensor 6 (A21 = 1 or 2) (break or short circuit on sensor F4)</td>
<td>not required</td>
<td>Inspect sensor</td>
</tr>
<tr>
<td>F7</td>
<td>Sensor error sensor 7</td>
<td>not required</td>
<td>Inspect sensor</td>
</tr>
<tr>
<td>F8</td>
<td>Motor fault M1 (fan)</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check motor; replace if necessary</td>
</tr>
<tr>
<td>F9</td>
<td>Motor fault M2 (fan)</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check motor; replace if necessary</td>
</tr>
<tr>
<td>F10</td>
<td>Motor fault M3 (fan)</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check motor; replace if necessary</td>
</tr>
<tr>
<td>F11</td>
<td>Motor fault M4 (fan)</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check motor; replace if necessary</td>
</tr>
<tr>
<td>F12</td>
<td>Motor fault M5 (fan)</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check motor; replace if necessary</td>
</tr>
<tr>
<td>F13</td>
<td>Motor fault M6 (fan)</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check motor; replace if necessary</td>
</tr>
<tr>
<td>F14</td>
<td>Battery version: power supply error 1</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check power supply (optional, 48 V version only)</td>
</tr>
<tr>
<td>F15</td>
<td>Battery version: power supply error 2</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check power supply (optional, 48 V version only)</td>
</tr>
<tr>
<td>F16</td>
<td>Air exit temperature limit value</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check cooling water loop, check water control valve</td>
</tr>
<tr>
<td>F17</td>
<td>Air entry temperature limit value</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check cooling water loop, check water control valve</td>
</tr>
<tr>
<td>F18</td>
<td>Water inlet temperature limit value</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check cooling water loop, check water control valve</td>
</tr>
<tr>
<td>F19</td>
<td>OPTION: Door open error message</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Close cabinet door</td>
</tr>
<tr>
<td>F20</td>
<td>Maximum cooling error message (digital input)</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check cooling water loop, check water control valve</td>
</tr>
<tr>
<td>F21</td>
<td>Maximum cooling</td>
<td>Acknowledged automatically</td>
<td>Check cooling water loop, water control valve and droplet separator</td>
</tr>
<tr>
<td>F22</td>
<td>OPTION: Water leakage error message</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check water loop</td>
</tr>
<tr>
<td>F23</td>
<td>OPTION: Humidity limit value</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check cooling water loop, check water control valve</td>
</tr>
<tr>
<td>F24</td>
<td>OPTION: External water chiller error message</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check water chiller device</td>
</tr>
<tr>
<td>F25</td>
<td>OPTION: Water exit temperature limit value</td>
<td>Acknowledge with the DOWN button, if parameterised to hand reset.</td>
<td>Check cooling water loop, check water control valve</td>
</tr>
<tr>
<td>EP</td>
<td>Loss of data in parameter memory</td>
<td>Interrupt power supply</td>
<td>Repair control board</td>
</tr>
</tbody>
</table>
7.3 Fitting/removing the cooling module

Attention!
Under no circumstances should the cooling module be stored and transported in contact with water. After removal the module should be laid on its side so that any remaining cooling water can drain from the heat exchanger.

All water connections must be closed with suitable blind plugs to prevent damage to nearby components caused by any leakage of cooling water from the unit.

Where temperatures during storage or transport may fall below 0° C the heat exchanger should be flushed with an appropriate antifreeze (ethylene glycol).

7.3.1 Decommissioning the cooling module

Attention!
If the water connections on the cooling module are isolated the heat exchanger remains filled with water, since the inlet and return are situated on top of the exchanger.

Attention!
Where temperatures may fall below 0° C following decommissioning the heat exchanger should be flushed with an appropriate antifreeze (ethylene glycol).

Work steps: decommissioning

1. Isolate the supply voltage
2. Isolate the water inlet to the cooling module
3. Open the bleeder valve on the cooling module
4. Open the drainage valve (external) and allow the pipes to drain until empty.
5. Disconnect water connections at the cooling module.
 Note: place a suitable receptacle (approx. 6 litres) underneath.
6. Close the bleeder valve on the cooling module
7. Seal the water connections on the cooling module to prevent damage to nearby components being caused by any leakage of residual cooling water.
7.3.2 Fitting and removing the cooling module

<table>
<thead>
<tr>
<th>Attention!</th>
</tr>
</thead>
<tbody>
<tr>
<td>On account of the size and weight of the cooling module (80 kg), do not attempt to move it unaided.</td>
</tr>
</tbody>
</table>

1. Open the rear of the cabinet and unscrew the bolts (see arrows) on the angle brackets.

2. Open the front of the cabinet and unscrew the bolts (see arrows) on the retaining plate.

3. Remove air deflector from cabinet upright.

4. Pull cooling unit forward to remove.
 Note: The heat exchanger may still contain residual water. Ensure when removing the unit that the water connections are sealed.

5. To install the cooling module, perform the above steps in reverse.
7.3.3 Flushing the cooling module with antifreeze

Attention!

If the cooling module is to be left on its side, all water connections must first be sealed to prevent any leakage of water that could damage the control electronics.

The cooling module may be flushed with a conventional glycol-based antifreeze, e.g. Glysantin produced by BASF.

Care should however be taken to ensure the compatibility of the antifreeze with the external pipework.

Work steps: flushing the module:

1. Remove cooling module from cabinet.
2. Close condensate drain.
3. Connect a pressure pump (hand pump) to the inlet.
4. Connect a hose (approx. 3 m) to the return.
5. Open the control valve actuator by hand. (See procedure in the section 'Bleeding air from the cooling module')
6. Lie the module on its left side (bleeder valve and condensate drain upward)
7. Place the inlet hose of the pump and the return hose of the cooling module in a container with capacity of approx. 15 litres.
8. Pour about 3.5 litres of antifreeze into the container. (This will provide frost protection down to about -20 °C)
9. Start the pump and allow the module to be flushed with antifreeze for between 5 and 15 minutes, until the antifreeze is fully mixed with the cooling water of the heat exchanger.
10. Switch off pump and open bleeder valve on the heat exchanger. (If the pump is fitted with a non-return valve, it should be replaced with a hose.)
11. If required, further residual water can be forced out of the heat exchanger by means of pressurised air. To do this, connect a compressor (max. pressure 6 bar!) to the inlet. Open the air pressure valve slowly to avoid an overflow of water/antifreeze mixture in the collecting vessel.
12. After evacuation, seal inlet and return with suitable plugs.
13. The module should be clearly labelled with the following text: "Beware: contains residual coolant. Open only with a receptacle placed beneath module."
14. Coolant should be disposed of in accordance with environmental regulations.
7.4 Component replacement

7.4.1 Removing and fitting fans

<table>
<thead>
<tr>
<th>Attention!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans can be replaced while the system is in operation. Please be aware during removal, and particularly during fitting, of the mass moment of inertia of the rotating fan.</td>
</tr>
</tbody>
</table>

If the fan still does not function after replacement, check the fan fuse on the control board. The control board is situated beneath the cover on which the display is mounted. Disconnect the mains supply before removing the cover.

Removing and fitting fans

1 Unscrew domed nuts (see arrows).
2 Remove fan.
3 Disconnect electrical connector (1).
4 Fit new unit following the above steps in reverse.
7.4.2 Removing and fitting the fan unit

Attention!
The fan unit must only be removed when the system is switched off. To remove the unit switch off the cooling module or isolate the mains supply.

Removing and fitting the fan unit

1. Switch off cooling module or isolate mains supply.
2. Remove air deflector (1) from cabinet upright.
3. Rotate quick-release fasteners approx. 90° in direction of arrows.
4. Lift fan unit (2) and pull forward to remove.
5. Disconnect electrical connectors (3).
6. Fit new unit following the above steps in reverse.
7.4.3 Cleaning / replacing the droplet separator

Removing and fitting the droplet separator

1 Remove fan unit.

2 Loosen bolts (see arrows) on the securing plate at the top of the droplet separator until the plate is loose.

3 Remove droplet separator (1).

4 Fit new unit following the above steps in reverse.
7.4.4 Replacing the electric control valve actuator

Attention!

Before replacing the control valve actuator the cooling module must be isolated from the mains voltage. Switching off with the standby button is not sufficient, since the actuator remains live and may be damaged during removal or fitting.

For fitting, the actuator must be in the 0 position.

During commissioning and on every time power is applied to the actuator, the actuator performs a self-calibration routine (valve stroke 0 - valve stroke max.-valve stroke 0). No manual interventions are permitted during calibration. If the actuator is operated without the valve, its correct functioning cannot be guaranteed. After three calibration attempts the valve stem remains extended. Before mounting the actuator on the control valve the power must be disconnected and the valve stem brought to the 0 position by hand. Once the actuator has been correctly fitted to the control valve and the power reconnected, the self-calibration cycle is repeated.

1. Isolate cooling module from mains supply.
2. Open the rear of the cabinet.
3. Remove cover plate from the lower part of the cooling module.
4. Undo retainer nut on actuator and remove actuator.
5. Disconnect electrical connector.
6. Fit new unit following the above steps in reverse. **Note:** Actuator must be in position “0”; see notes on the actuator.
7.4.5 Replacing the control and display unit

Figure 7: Control and display unit

Removing and fitting the display unit

1 Unscrew bolts (see arrows) and pull the control and display unit out of the module.

2 Disconnect RJ45 connector.

3 Fit new unit following the above steps in reverse.
7.4.6 Replacing the temperature sensors

Hazardous voltage!

Under certain circumstances during commissioning, completion, maintenance and service it is necessary to open the enclosure. Some exposed parts may be under live voltage. These works must therefore only be carried out by specially trained technical personnel. Always disconnect the supply voltage before opening the module!

The cooling module contains 5 temperature sensors.

The temperature sensors for the air exit temperature (F1/F2) are situated between the heat exchanger and the droplet separator. To remove these sensors the fan unit and droplet separator must be removed.

Temperature sensors for the air inlet temperature (F3/F4) are situated behind the air inlet grille and are directly accessible.

The water inlet temperature sensor is situated on the pipework near the control valve.

All temperature sensors are connected to the control board (X11 connector, see arrow). The control board is situated beneath the cover on which the display is mounted.
7.4.7 Replacing other components

Provision has not been made for the replacing of other components on site. If it is not possible to bring the cooling module into operation with the steps covered in this chapter, the entire module should be removed and returned to Schroff.

ServicePLUS

Where servicing is required, contact your Schroff dealer or Schroff directly.

You can obtain further information about our ServicePLUS options online at: www.schroff.biz/ServicePlus
8 Service

8.1 Service and Returns

ServicePLUS
Where servicing is required, contact your Schroff dealer or Schroff directly. Where a maintenance contract has been agreed, all maintenance shall be carried out exclusively by Schroff Service.

Please ask about our after-sales services.

You can obtain further information about our ServicePLUS options online at: www.schroff.biz/ServicePlus

To avoid damage in transport, please return the unit only in its original packaging.

8.2 Technical support

ServicePLUS
For all technical enquiries or product support or if service is required, please contact your Schroff dealer or go to www.schroff.biz.
8.3 Declaration of Conformity

This declaration of conformity applies in regard to the following guidelines:

- EC Machinery Directive 2006/42/EC
- EC EMC Directive 2004/108/EC
- EC Low Voltage Directive 2006/95/EC

Machine type

<table>
<thead>
<tr>
<th>Product</th>
<th>Air/water heat exchanger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type / designation</td>
<td>Varistar LHX 20</td>
</tr>
<tr>
<td>Order No.</td>
<td>60714-050, 10130-012, -013, -014, -016, -017, -018</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>230 VAC 50/60 Hz, 48 VDC</td>
</tr>
</tbody>
</table>

has been developed, designed and manufactured in conformity with the above-named EC Guidelines by:

Company

Schroff GmbH
Langenalber Straße 96 100
D-75334 Straubenhardt

The following harmonised standards were applied:

- EN ISO 12100-1, -2 Safety of Machinery
- EN ISO 13857 Safety of Machinery
- DIN EN 60204-1 Electrical Equipment of Machines
- EN 61000-6-2 Electromagnetic Compatibility
- EN 61000-6-4 Electromagnetic Compatibility
- Protective earthing connections to EN 60950-1
- External and internal dimensions to IEC 60297 parts 1 and 2
- Ingress protection IP55 to IEC 60529

The following German standards and regulations were applied:

- BGR 500 Accident prevention regulations, cooling devices and heat pumps

Technical documentation is available in full.
This is the operating manual provided for the above equipment.

Straubenhardt, 01.10.2008

Walter Kritikos
President

pp. Karsten Lengnink
Head of Product Development, Cabinets
8.4 Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet gateway</td>
<td>60130-440</td>
</tr>
<tr>
<td>AC mains switch box</td>
<td>23207-115</td>
</tr>
<tr>
<td>Water connection kit</td>
<td>60714-065</td>
</tr>
<tr>
<td>External display</td>
<td>60714-069</td>
</tr>
</tbody>
</table>

8.5 Spare parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete cooling module, 20 kW, 230 VAC</td>
<td>60714-050</td>
</tr>
<tr>
<td>Droplet separator</td>
<td>60714-053</td>
</tr>
<tr>
<td>Servo actuator for control valve</td>
<td>60714-054</td>
</tr>
<tr>
<td>Control board</td>
<td>60714-055</td>
</tr>
<tr>
<td>Control unit (display)</td>
<td>60714-056</td>
</tr>
<tr>
<td>Air temperature sensor incl. 3 m cable</td>
<td>60714-057</td>
</tr>
<tr>
<td>Water temperature sensor incl. 3 m cable</td>
<td>60714-058</td>
</tr>
<tr>
<td>Fan unit, complete with 6 fans</td>
<td>60714-063</td>
</tr>
<tr>
<td>Fan, complete with front panel</td>
<td>60714-064</td>
</tr>
</tbody>
</table>
9 Technical data

Table 2: Technical data

<table>
<thead>
<tr>
<th>Cabinet dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>mm</td>
</tr>
<tr>
<td>Depth</td>
<td>mm</td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>IP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cooling module dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>mm</td>
</tr>
<tr>
<td>Depth</td>
<td>mm</td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature during transport (min./max.)</td>
</tr>
<tr>
<td>Ambient temperature outside cabinet during operation (min./max.)</td>
</tr>
<tr>
<td>Relative humidity (min./max.)</td>
</tr>
<tr>
<td>Noise level, cabinet closed, fans at 80% capacity</td>
</tr>
<tr>
<td>Noise level, cabinet closed, fans at 100% capacity</td>
</tr>
<tr>
<td>Weight without/with water</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Useable cooling capacity</td>
</tr>
<tr>
<td>Cooling medium</td>
</tr>
<tr>
<td>Water flow volume</td>
</tr>
<tr>
<td>Pressure loss in device, measured at 1.55 m³/h</td>
</tr>
<tr>
<td>Pressure loss in device, measured at 2.8 m³/h</td>
</tr>
<tr>
<td>Max. operating pressure</td>
</tr>
<tr>
<td>Max. differential pressure of the water valve</td>
</tr>
<tr>
<td>Water inlet temperature (min./max.)</td>
</tr>
<tr>
<td>Airflow volume (max.)</td>
</tr>
<tr>
<td>Air exit temperature, adjustable (in steps of 0.1)</td>
</tr>
<tr>
<td>Max. offset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical data, AC version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
</tr>
<tr>
<td>Max. current draw</td>
</tr>
<tr>
<td>Max. power consumption</td>
</tr>
<tr>
<td>Apparent power at full load</td>
</tr>
<tr>
<td>Pre-fusing (external)</td>
</tr>
<tr>
<td>Circuit Breaker (internal)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical data, DC version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (line voltage)</td>
</tr>
<tr>
<td>Max. current draw</td>
</tr>
<tr>
<td>Max. power consumption</td>
</tr>
<tr>
<td>Pre-fusing (external)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water pipework (copper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water inlet/return connection</td>
</tr>
<tr>
<td>Condensate drain connection</td>
</tr>
</tbody>
</table>
10 Appendix

10.1 Cooling capacity

![Diagram]

- Maximum permissible differential pressure at the water control valve = 2 bar
- Control range of the water valve: Fan speed constant at 80%
- Water control valve 100% open at 2.8 m³/h
- Outlet Temperature [°C]
- Cooling Capacity [kW]
10.2 Connectors/interfaces on the control board
10.3 AC power supply diagram
10.4 Temperature sensor connections
10.5 Fan and control valve connections
10.6 Display connection; connectors on the control board
10.7 Dimensions
10.8 LHX 20 base plate

View of base plate from above

A = front; B = rear
10.9 Example installation

Emergency cooling:

Valves A and B closed, valves C and D open.

Valves A to D are motorised valves with end position switches.
10.10 Piping and instrumentation diagram

1 Bypass is sealed by default.